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II.1 Analogic signal processing

Framework :

s(t) is a time continuous signal (' electrical tension)

s(t) is real-valued
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II.1.a Fourier transform of an analogic signal

Definition : For s(t) ∈ L1

ŝ(ω) =
∫

s(t)e−iωtdt

Inversion Theorem :

s(t) = 1
2π

∫
ŝ(ω)eiωtdω
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L1

s(t) ∈ L1, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks
1. ŝ(ω)inC0

2. L1 ∩ L2 is dense in L1 → extension to L2
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L2

s(t) ∈ L2, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks (continued)
3. We could write symbolically (this is not rigorous since

eiωt /∈ L2)
ŝ(ω) =< s, eiωt >

And then write

s(t) = 1
2π

∫
< s, eiωt > eiωtdω
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L2

s(t) ∈ L2, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks (continued)
4. s(t) is real =⇒ ŝ(−ω) = ŝ∗(ω)

(no information in negative frequency)
5. The inverse Fourier transform can be seen as a decomposition

on sums of sinusoids with
frequency ω/2π
phase arg(ŝ(ω))
amplitude |ŝ(ω)|
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L2

s(t) ∈ L2, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks (continued)
6. Amplitude modulation : a multiplication of the signal by eiω0t

leads to a translation by ω0 (towards the "right") of its
Fourier transform.

̂s(t)eiω0t(ω) = ŝ(ω − ω0)
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L2

s(t) ∈ L2, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks (continued)
7. Derivation enhances high frequencies

ŝ ′(t)(ω) = iωŝ(ω)

Consequently
ŝ(p)(t)(ω) = (iω)p ŝ(ω)
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II.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) ∈ L2

s(t) ∈ L2, ŝ(ω) =
∫

s(t)e−iωtdt, s(t) = 1
2π

∫
ŝ(ω)eiωtdω

Remarks (continued)

8. Since ŝ(p)(t)(ω) = (iω)p ŝ(ω), there is a strong link between
regularity of s(t) and its energy at high frequencies.
Actually

|ŝ(ω)| < K
ωp + 1 + ε

=⇒ s ∈ Cp

9. Moreover
ŝ(ω) has a compact support −→ s ∈ C∞
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II.1.b Convolution

Looking for "simple" sound transformation L:
L : linear operator
L : translation invariant, i.e., L(s(.− t0))(t) = L(s(.))(t − t0)

We can write
s(t) =

∫
s(u)δ(t − u)

Thus
L(s)(t) =

∫
s(u)L(δ)(t − u)du

Setting h = L(δ) the impulse response of L, we get

L(s)(t) =
∫

s(u)h(t − u)du = s ? h(t)

=⇒ That leads to convolution operators

s ? h =
∫

s(u)h(t − u)du =
∫

s(t − u)h(u)du
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II.1.b Convolution

Three very important properties of convolution

L(s) = s ? h =
∫

s(u)h(t − u)du

Causality : h(u) = 0 for u < 0
Stability (i.e., s bounded =⇒ s ? h bounded) : h ∈ L1

for all ω, the function of t : eiωt is an eigen vector of the
convolution operator associated to the eigen value ĥ(ω)

L(eiωt) =
∫

eiω(t−u)h(u)du = eiωt
∫

e−iωuh(u)du = ĥ(ω)eiωt
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II.1.b Convolution

Thus since s(t) = 1
2π
∫

ŝ(ω)eiωtdt, we get

L(s)(t) = s ? h = 1
2π

∫
ŝ(ω)L(eiωt)dt

= 1
2π

∫
ŝ(ω)ĥ(ω)eiωtdt

Since L(s)(t) = 1
2π
∫ ˆL(s)(ω)eiωtdt,

by identification, one gets the convolution theorem

ŝ ? h(ω) = ŝ(ω)ĥ(ω)
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II.1.b Convolution

ŝ ? h(ω) = ŝ(ω)ĥ(ω)

Thus a convolution can be seen as a filtering process (more on
that later)

Three "classic" filter categories

low-pass filter (ex : hω0(t) = sin(ω0t)/πt)
band-pass filter
high-pass filter
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II.2 Time sampling

In order to be able to manipulate an audio signal on a computer,
we need to sample it

{s(t)}t −→ {s(nT )}n,

where
T is the sampling period
Fs = 2π

T is the sampling frequency

"No loss" =⇒ we want to be able to go back s(nT ) −→ s(t)

Any intuition ?

E.Bacry Audio Signal Processing : I. Introduction - MVA 14



II.2 Time sampling

s(nT ) = 1
2π

∫
ŝ(ω)eiωnT dω

= 1
2π
∑

k

∫ 2π(k+1)
T

2πk
T

ŝ(ω)eiωnT dω

= 1
2π
∑

k

∫ 2π
T

0
ŝ(ω + 2πk

T )eiωnT dω

= 1
2π

∫ 2π
T

0

∑
k

(
ŝ(ω + 2πk

T )
)

eiωnT dω

We set the function ˜̂s(ω) =
∑

k

(
ŝ(ω + 2πk

T )
)
, we have

˜̂s(ω) = T
∑

n
s(nT )e−iωnT

How do we go back from ˜̂s(ω) to s(t) ?
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˜̂s(ω) = T
∑

n
s(nT )e−iωnT

How do we go back from ˜̂s(ω) to s(t) ?
The simplest case is to suppose that s is supported by
]− π/T , π/T [=]− Fs/2,Fs/2[
If it is not the case : aliasing

ŝ(ω) = 1]−π2 ,
π
2 [(ω)˜̂s(ω)

= T1]−π2 ,
π
2 [(ω)

∑
n

s(nT )e−iωnT

= T
∑

n
s(nT )1]−π2 ,

π
2 [e−iωnT

Thus

s(t) = T
∑

n
s(nT )h π

T
(t − nT ) =

∑
n

s(nT )sinc
(
π

T (t − nT )
)
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II.2 Time sampling

The Shannon theorem

If the support of ŝ(ω) is included in ]− Fs/2,Fs/2[ then the "go
back" is possible through

s(t) = T
∑

n
s(nT )h π

T
(t − nT )

Remarks :
Discretization ←→ Periodization
Preprocessing low pass filter : Beware aliasing (which filter ?)
Which sampling frequency ?
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II.3 Discrete-time processing

Framework

s[n] is a real-valued discrete time audio signal.
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II.3.a The Fourier transform of a discrete-time signal

s[n] can be seen as a "continuous-time" signal (isomorphism)

{s[n]}n ←→ f (t) =
∑

n
s[n]δ(t − n)

Since

f̂ (ω) =
∑

n
s[n]e−inω

(a 2π-periodic function), that leads to the "natural" definition

Fourier Transform of a discrete-time signal

ŝ(eiω) =
∑

n
s[n]e−inω
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II.3.b Convolution of a discrete-time signal

Again : Looking for "simple" sound transformation L:

L : linear operator
L : translation invariant, i.e., L(s[.− n0])[n] = L(s[.])[n − n0]

=⇒ That leads to convolution operators :

L(s)[n] = s ? h[n] =
∑

k
s[k]h[n − k] =

∑
k

s[n − k]h[k]

where h is the impulsional response of L
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II.3.b Convolution of a discrete-time signal

Two very important properties of convolution

L(s) = s ? h[n] =
∑

k
s[k]h[n − k]

Causality : h[n] = 0 for n < 0
Stability (i.e., s bounded −→ s ? h bounded) : h ∈ l1
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II.3.c The Z -transform

Definition of the Z -transform
If s[n] is a time-discrete signal, its Z -transform is a function of a
complex variable (Z ) defined by

Ŝ(Z ) =
∑

n
s[n]Z−n

Remarks
"Equivalent" to the Laplace transform for time-continuous
functions
The convolution theorem reads :

Ŝ ? H(Z ) = Ŝ(Z )Ĥ(Z )

We get ŝ(eiω) = Ŝ(Z ) and s[n] = 1
2π
∫ 2π

0 ŝ(eiω)einωdω
=⇒ Filtering
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II.3.c The Z -transform

What does a low-pass filter look like ?
What does a band-pass filter look like ?
What does a high-pass filter look like ?
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II.3.c The Z -transform

Let’s discuss some filtering examples

1 The Z−1 operator
2 The 1 + Z−1 operator
3 The 1− Z−1 operator
4 The 1

1−Z−1 operator
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II.4 Frequency sampling

In order to be able to manipulate the Fourier transform of an audio
digital signal on a computer, we need to sample its Fourier
transform on [0, 2π]

{s(eiω)}ω −→ {s(ei 2πk
N )}0≤k<N

where
We sample using N frequencies {ωk = 2πk

N }0≤k<N

"No loss" =⇒ we want to be able to go back :

{s(ei 2πk
N )}0≤k<N −→ {s(eiω)}ω

Discretization of the frequency space =⇒ Periodisation of the time
space
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II.4 Frequency sampling

The theorem (equivalent to Shannon theorem) :

If the support of s[n] is included in [0,N[ (or equivalently
N-periodic) then the "go back" is possible through

s(eiω) = 1
N

N−1∑
k=0

ŝ(ei 2πk
N )ĥN(ω − 2πk

N )

with hN [n] = 1[0,N[[n] and

ĥN(eiω) =
sin(Nω

2 )
sin(ω2 ) e−i (N−1)ω

2
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II.5 Digital signal processing

Framework

s[n] is a real-valued disrete-time audio signal of finite support size
N (or alternatively, N-periodic )
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II.5.a The discrete Fourier Transform

s[n] a real-valued signal with support [0,N]. We just apply the
Fourier transform formula for discrete-time signals :

s(eiω) =
N−1∑
n=0

s[n]e−inω

and we sample it using the previous frequency sampling ωk = 2πk
N

s(eiωk ) =
N−1∑
n=0

s[n]e−i 2πn
k

The Discrete Fourier Transform (Definition)

s[k] =
N−1∑
n=0

s[n]e−i 2πn
k
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II.5.a The discrete Fourier Transform

The Discrete Fourier Transform (Definition)

ŝ[k] =
N−1∑
n=0

s[n]e−i 2πn
k

The Inverse of the Discrete Fourier Transform

s[n] = 1
N

N−1∑
k=0

ŝ[k]ei 2πn
k

The FFT(W) : a fast algorithm in O(N log2 N)
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II.5.b Convolution of a periodic digital signal

We want to find the linear transformations (i.e., the
"convolutions") that are

invariant by time translation
(⇒ No way if s has a finite support !)
that satisfies the convolution theorem (ŝ?h[k] = ŝ[k]ĥ[k])

The right framework : s[n] and h[n] are N-periodic
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II.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic

The circular convolution (Definition)

L(s) = s ~ h[n] =
N−1∑
k=0

s[k]h[n − k]
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II.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic
The circular convolution (Definition)

L(s) = s ~ h[n] =
N−1∑
k=0

s[k]h[n − k]

for all k, the function n→ ei2πkn/N is an eigen vector of the
convolution operator associated to the eigen value ĥ[k]

L(ei2πkn/N) = ĥ[k]ei2πkn/N

=⇒ The convolution Theorem

ŝ ~ h[k] = ŝ[k]ĥ[k]
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II.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic
The circular convolution (Definition)

L(s) = s ~ h[n] =
∑
k=0

N − 1s[k]h[n − k]

The convolution Theorem

ŝ ~ h[k] = ŝ[k]ĥ[k]

What the hell are we going to do with that ?
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II.5.b The fast discrete convolution algorithm

The framework
s[n] supported by [0,N[
h[n] supported by [0,N[

The problem Can I design a fast (i.e., O(N log2 N)) algorithm to
compute

s ? h[n] =
∑

k
s[k]h[n − k]

?

E.Bacry Audio Signal Processing : I. Introduction - MVA 34



II.5.b The fast discrete convolution algorithm

The framework
s[n] supported by [0,N[
h[n] supported by [0,N[

=⇒ s ? h[n] is supported by [0, 2N[

New framework
We define s̃[n] a 2N-periodic signal such that

s̃[n] = s[n] ,∀n ∈ [0,N[
s̃[n] = 0 , ∀n ∈ [N, 2N[

We define in the same way h̃[n] a 2N-periodic signal
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II.5.b The fast discrete convolution algorithm

New framework
We define s̃[n] a 2N-periodic signal such that

s̃[n] = s[n] ,∀n ∈ [0,N[
s̃[n] = 0 , ∀n ∈ [N, 2N[

We define in the same way h̃[n] a 2N-periodic signal

Theorem
s ? h[n] = s̃ ~ h̃[n], ∀n ∈ [0, 2N[

We did it ! The complexity is the one of the FFT O(N log2 N)
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II.5.b The fast discrete convolution algorithm

But often s[n] (the audio signal) has a larger size (N) than the size
(M) of h[n] (the filter)

In that case, can’t we do better than O(N log2 N) ?
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II.5.b The fast discrete convolution algorithm

The framework
s[n] supported by [0,N[
h[n] supported by [0,M[ with M << N

We can write

s ? h[n] =
N/M∑
i=0

si ? h[n]

where si [n] = s[n]1[iM,(i+1)M]

That corresponds to a complexity of O(N log2 M)
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II.6 Last step : Quantization

The principle

s[n] is a continuous value −→ we need to bound it and discretize it
In practice : Two steps

clipping
discretization
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II.6.a Quantization : main principles

Discretization : two characteristics

number of bits used for each value (8,12,16,24, ...)
the quantification type

uniform (linear) ⇒ pb in low-amplitude zones if there are
high-amplitude zones
log

=⇒ Quantization noise
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II.6.a Quantization : main principles

s[n] : the original signal
s̃[n] : the quantized signal
Quantization noise : s[n]− s̃[n]

Ouups, it looks like we have a problem here ?
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II.6.a Quantization : main principles

s[n] : the original signal
s̃[n] : the quantized signal
Quantization noise : s[n]− s̃[n]

In low-amplitude zones the quantization noise is highly
correlated to the signal itself. This is a real problem !
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II.6.a Quantization : main principles

In low-amplitude zones the quantization noise is highly
correlated to the signal itself. This is a real problem !

Ideally : we would like the quantization noise to be independant of
the audio signal, e.g., we would like the quantization noise to be a
white noise (with a density that does not depend on the density of
the signal itself)
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II.6.b A first-order analysis of the quantization error

The framework
We consider that the audio signal is a stationnary stochastic
process X [n]
Q is a linear quantifier of step q

Q : [iq − q
2 , iq + q

2 ]→ x − iq, ∀i

The quantization errror

X̃ [n] = X [n]− Q(X )

The (first-order) problem
What preprocessing can we make to X [n] so that the density of
X̃ [n] is always uniform (i.e., does not depend on the one of X [n]) ?
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II.6.b A first-order analysis of the quantization error

Let pX (x) the density of the law of X [n] and pX̃ (x̃) the one of X̃
Since

Prob(X̃ = x̃) = 1]− q
2 ,

q
2 [(x̃)

∑
k

Prob(X = x̃ + kq)

one gets
pX̃ (x̃) = 1]− q

2 ,
q
2 [(x̃)

∑
k

pX (x̃ + kq)

Thus we would like to have
∑

k pX (x̃ + kq) = 1
q

Since
∑

k pX (x̃ + kq) = pX ?
∑

k δ(x̃ + kq), by Fourier transform
we get (using the Poisson formula)

p̂X (ω)2πq
∑

k
δ(ω + 2πk

q ) = 2π
q δ(ω)
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II.6.b A first-order analysis of the quantization error

Theorem

The density of X̃ [n] is uniform (on [−q/2, q/2[) iff

p̂X

(2πk
q

)
= 0, ∀k 6= 0
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II.6.c A second-order analysis of the quantization error

Theorem

The density of (X̃ [n], X̃ [n + m]) is uniform (on [−q/2, q/2[) iff

p̂X [n],X [n+m]

(2πk
q ,

2πl
q

)
= 0, ∀(k, l) 6= (0, 0)

What preprocessing should we make one X [n] ?
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II.6.d Dithering

Theorem
The density of X̃ [n] is uniform (on [−q/2, q/2[) iff

p̂X

(2πk
q

)
= 0, ∀k 6= 0

Preprocessing : Dithering

X [n] −→ X [n] + W [n]

where W [n] is a uniform white noise.
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II.6.d Dithering

Preprocessing : Dithering

X [n] −→ X [n] + W [n]

where W [n] is a uniform white noise.

Did we really solve our problem ?

Nope : X + W − Q(X + W ) is white but not X − Q(X + W )

=⇒ What we did corresponds to substractive dithering
(X − (Q(X + W )−W ) is white)

Solution ?
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II.6.e Decreasing the quantization error

Oversampling technique
σ −∆ technique
. . .

In practice ?
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