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I1.1 Analogic signal processing

Framework :

s(t) is a time continuous signal (~~ electrical tension)

s(t) is real-valued
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I1.1.a Fourier transform of an analogic signal

Definition : For s(t) € L

Inversion Theorem :
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L!

s(t) e 1!, §(w) = / s(t)e e, s(t) = % / S(w)e“t duw

Remarks
1. 3(w)inC®
2. 1N L2 s dense in L} — extension to L2
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L2

s(t) e 12, 5(w) :/s(t)e—"wtdt, s(t) = 1/§(w)e"wtdw

21

Remarks (continued)

3. We could write symbolically (this is not rigorous since
eiwt ¢ L2)
s(w) =< s, et >

And then write
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L?

s(t) e 12, 3(w)= / s(t)e @tdr, s(t) = % / §(w)e dw

Remarks (continued)
4. s(t) is real = §(—w) = §*(w)
(no information in negative frequency)

5. The inverse Fourier transform can be seen as a decomposition
on sums of sinusoids with

e frequency w/2m
e phase arg(5(w))
o amplitude |§(w)|
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L?

S €1 3w)= [s(e e s() = o [ s(u)eta

Remarks (continued)

6. Amplitude modulation : a multiplication of the signal by e/“o?
leads to a translation by wp (towards the "right") of its
Fourier transform.

—

s(t)eot(w) = §(w — wp)
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L?

s(t) € 12, §(w) = / s(t)e “idt, s(t) = 217T/ §(w)et du

Remarks (continued)

7. Derivation enhances high frequencies

Consequently
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I1.1.a Fourier transform of an analogic signal

Fourier transform + inversion : For s(t) € L2

s(t) € Lz, S(w) = /.S(t)e_'utdt, s(t) = i /g(w)eiwtdw

21

Remarks (continued)

—

8. Since s(P)(t)(w) = (iw)P8(w), there is a strong link between
regularity of s(t) and its energy at high frequencies.

Actually
. K
s3(w)| < ————=seC’
wP+1+c¢€
9. Moreover

5(w) has a compact support — s € C™
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I11.1.b Convolution

Looking for "simple' sound transformation L:

@ L : linear operator
e L : translation invariant, i.e., L(s(. — t0))(t) = L(s(.))(t — to)
We can write X
s(t) :/s(u)é(tf )
Thus
L(s)(t) = /s(u)L(a)(t — u)du

Setting h = L(J) the impulse response of L, we get

L(s)(t) = /s(u)h(t — u)du = s+ h(t)

— That leads to convolution operators

sxh= /s(u)h(t — u)du = /s(t — W)h(u)du
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I11.1.b Convolution

Three very important properties of convolution

L(s)=sxh= /s(u)h(t — u)du

e Causality : h(u) =0 for u<0
o Stability (i.e., s bounded = s % h bounded) : h € L!

e for all w, the function of t : e/“! is an eigen vector of the
convolution operator associated to the eigen value h(w)

() = [ e In(u)du = et [ e~ h(u)du = h(w)e™"
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I11.1.b Convolution

Thus since s(t) = 5 [ $(w)etdt, we get

L(s)() = sxh= ;T/.%(w)L(e"“’t)dt
_ % / S(w)h(w)et dt
Since L(s)(t) = 2 [ L(s)(w)e™dt,

by identification, one gets the convolution theorem
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I11.1.b Convolution

—

s+ h(w) = §(w)h(w)
Thus a convolution can be seen as a filtering process (more on
that later)
Three "classic" filter categories
@ low-pass filter (ex : hy(t) = sin(wot)/mt)
@ band-pass filter

@ high-pass filter
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1.2 Time sampling

In order to be able to manipulate an audio signal on a computer,
we need to sample it

{s(t)}e — {s(nT)}n,

where
@ T is the sampling period

o F, = 2T is the sampling frequency

"No loss'" = we want to be able to go back s(nT) — s(t)

Any intuition 7
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1.2 Time sampling

1 .
s(nT) = Z/%(w)e’“”wa

(k+1)

= Z/ §(w)e™"T dw
T 2k,
_ 27z:/T g(w_i_%)elwanw
s
2 k ;
- L / Z(é ok >e’“”wa
s

We set the function 5(w) = 37, ( (w+ 2”")), we have

§(w) =T Z s(nT)e_i‘*’”T

How do we go back from §(w) to s(t) ?
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Swy=T Z s(nT)e nT

How do we go back from 5(w) to s(t) ?

The simplest case is to suppose that s is supported by
| —7n/T,w/T[=] — Fs/2, Fs/2]

If it is not the case : aliasing

§(w) = 1]_%%[(0«))5((&)
= Tl]_%,g[(w)Zs(nT)e_"w”T

n

= TZ s(nT)ll_%%[e_"W”T

n

Thus

s(t) = TZs(nT)h;(t —nT) = Zs(nT)sinc (Z;_(t - nT)>

n
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1.2 Time sampling

The Shannon theorem

If the support of §(w) is included in | — Fs/2, Fs/2[ then the "go
back" is possible through

s(t) =T s(nT)hz(t —nT)

Remarks :
@ Discretization <— Periodization

@ Preprocessing low pass filter : Beware aliasing (which filter ?)
@ Which sampling frequency 7
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I1.3 Discrete-time processing

Framework

s[n] is a real-valued discrete time audio signal.
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11.3.a The Fourier transform of a discrete-time signal

s[n] can be seen as a "continuous-time" signal (isomorphism)

{s[n]}n «— f(t) = Zs[n]é(t —n)

n

Since

Flw) = s[n]e~™

n

(a 27-periodic function), that leads to the "natural" definition

Fourier Transform of a discrete-time signal

g(eiw) — Z s[n]e—inw

n
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11.3.b Convolution of a discrete-time signal

Again : Looking for "simple' sound transformation L:

@ L : linear operator

e L : translation invariant, i.e., L(s[. — no])[n] = L(s[.])[n — no]

= That leads to convolution operators :

L(s)[n] = s* h[n] = s[klh[n — k] = s[n — k]h[k]

k k

where h is the impulsional response of L
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11.3.b Convolution of a discrete-time signal

Two very important properties of convolution

L(s) = s h[n] = s[k]h[n — K]

k

e Causality : h[n] =0forn<0
e Stability (i.e., s bounded — s x h bounded) : h € /!
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I11.3.c The Z-transform

Definition of the Z-transform
If s[n] is a time-discrete signal, its Z-transform is a function of a
complex variable (Z) defined by

5(2) = Zs[n]Z‘”

n

Remarks

e "Equivalent" to the Laplace transform for time-continuous
functions

@ The convolution theorem reads :

® We get §(e) = $(2) and sn] = 7 3" 3(e™)e™ do
e — Filtering
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I11.3.c The Z-transform

@ What does a low-pass filter look like ?
@ What does a band-pass filter look like ?
@ What does a high-pass filter look like 7
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I11.3.c The Z-transform

Let's discuss some filtering examples

1 The Z~1 operator
2 The 1+ Z~1 operator
3 The 1 — Z~1 operator

4 The 1_},1 operator
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1.4 Frequency sampling

In order to be able to manipulate the Fourier transform of an audio
digital signal on a computer, we need to sample its Fourier
transform on [0, 27]

{s(e™)}e — {s("'F ) }ocken

where

e We sample using N frequencies {wy = %}OSKN
"No loss" = we want to be able to go back :
2mk .
{s(e" " )} o<ken — {s(e")}

Discretization of the frequency space = Periodisation of the time
space
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1.4 Frequency sampling

The theorem (equivalent to Shannon theorem) :

If the support of s[n] is included in [0, N[ (or equivalently
N-periodic) then the "go back" is possible through

2wk A~ 27Tk
s(e') = — s(e" v hy(w — —)
N = N
with hy[n] = 1jo q[n] and
sin(M2) v-1
h iwy __ 2 —i
M) =Gy ¢

E.Bacry Audio Signal Processing : |. Introduction - MVA



I1.5 Digital signal processing

Framework

s[n] is a real-valued disrete-time audio signal of finite support size
N (or alternatively, N-periodic )
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I11.5.a The discrete Fourier Transform

s[n] a real-valued signal with support [0, N]. We just apply the
Fourier transform formula for discrete-time signals :

N—-1

s(e®) = > s[ne™
n=0

and we sample it using the previous frequency sampling wy = %

N-1
n

s(e'n) = Z s[n]ef"%

n=0

The Discrete Fourier Transform (Definition)

N-1
:2mn

slk] = Z s[nle™" "«

n=0
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I11.5.a The discrete Fourier Transform

The Discrete Fourier Transform (Definition)

N-1
:2mn

slk] = Z s[nle™" "«

n=0
The Inverse of the Discrete Fourier Transform

N—-1
:2mn

s[n] = % Z S[kle' «

k=0
The FFT(W) : a fast algorithm in O(N log, N)
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11.5.b Convolution of a periodic digital signal

We want to find the linear transformations (i.e., the
"convolutions") that are

@ invariant by time translation
(= No way if s has a finite support !)

@ that satisfies the convolution theorem (ﬂ[k] = 8[k]h[K])

The right framework : s[n] and h[n] are N-periodic
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11.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic

The circular convolution (Definition)

N—-1

L(s) =s® h[n] = Z s[k]h[n — K]

k=0

E.Bacry Audio Signal Processing : |. Introduction - MVA



11.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic
The circular convolution (Definition)

N-1
L(s)=s® h[n] = > s[k]h[n — K]
k=0
for all k, the function n — €27%"/N is an eigen vector of the

convolution operator associated to the eigen value A[k]

L(ei27rkn/N) — ;"[k]eiQWkn/N
— The convolution Theorem

s ® h[K] = 3[Kk]A[K]
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11.5.b Convolution of a periodic digital signal

s[n] and h[n] are N-periodic
The circular convolution (Definition)

L(s)=s® h[n] =Y N — 1s[k]h[n — K]
k=0

The convolution Theorem

s ® h[k] = S[K]A[K]

What the hell are we going to do with that ?
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I1.5.b The fast discrete convolution algorithm

The framework
@ s[n] supported by [0, N|
@ h[n] supported by [0, N[

The problem Can | design a fast (i.e., O(N log, N)) algorithm to
compute

s h[n] = Z slk]h[n — k]

k
?

E.Bacry Audio Signal Processing : |. Introduction - MVA



I1.5.b The fast discrete convolution algorithm

The framework
@ s[n] supported by [0, N|
@ h[n] supported by [0, N[
= s* h[n] is supported by [0,2N]

New framework

@ We define 5[n] a 2N-periodic signal such that

5[n] = s[n] ,Vnel0,N]|
s[n] = 0 ,Yne|[N,2N|

o We define in the same way h[n] a 2N-periodic signal
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I1.5.b The fast discrete convolution algorithm

New framework

e We define 5[n] a 2N-periodic signal such that

3[n] = s[n] ,Vne0,N]|
s[n] = 0 ,Vne|[N,2N]|

@ We define in the same way h[n] a 2N-periodic signal

Theorem ;
s h[n] =8 ® h[n], Vne[0,2N]

We did it | The complexity is the one of the FFT O(N log, N)
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I11.5.b The fast discrete convolution algorithm

But often s[n] (the audio signal) has a larger size () than the size
(M) of h[n] (the filter)

In that case, can’'t we do better than O(N log, N) ?
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I1.5.b The fast discrete convolution algorithm

The framework
@ s[n] supported by [0, N|
@ h[n] supported by [0, M[ with M << N

We can write
N/M

s h[n] = Z s; = h[n]
i=0

where s;[n] = s[n]1{in (i+1)m

That corresponds to a complexity of O(N log, M)
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1.6 Last step : Quantization

The principle
s[n] is a continuous value — we need to bound it and discretize it

In practice : Two steps

o clipping
@ discretization
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I1.6.a Quantization : main principles

Discretization : two characteristics

@ number of bits used for each value (8,12,16,24, ...)
@ the quantification type

o uniform (linear) = pb in low-amplitude zones if there are
high-amplitude zones
e log

— Quantization noise
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I1.6.a Quantization : main principles

@ s[n] : the original signal
@ 5[n] : the quantized signal

@ Quantization noise : s[n] — 5[n|

Ouups, it looks like we have a problem here ?
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I1.6.a Quantization : main principles

@ s[n] : the original signal
@ 5[n] : the quantized signal

@ Quantization noise : s[n] — §[n]

@ @ @ ®
O ® ® DRCRO
® Ol JONCS
Ok Of ® ®
- walhi> P . ' Ay P 9
© 0 | ] ® 3 & 4
¢ I iy > & time
CRORCH O}
® @ ® | @
0 O}

In low-amplitude zones the quantization noise is highly
correlated to the signal itself. This is a real problem !
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I1.6.a Quantization : main principles

In low-amplitude zones the quantization noise is highly
correlated to the signal itself. This is a real problem !

Ideally : we would like the quantization noise to be independant of
the audio signal, e.g., we would like the quantization noise to be a
white noise (with a density that does not depend on the density of
the signal itself)
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11.6.b A first-order analysis of the quantization error

The framework

@ We consider that the audio signal is a stationnary stochastic
process X|[n]

@ Q@ is a linear quantifier of step g

Qﬂm-;m+g}+x—@ Vi

@ The quantization errror
X[n] = X[n] - Q(X)
The (first-order) problem

What preprocessing can we make to X[n] so that the density of
X[n] is always uniform (i.e., does not depend on the one of X[n]) 7
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11.6.b A first-order analysis of the quantization error

Let px(x) the density of the law of X[n] and px (%) the one of X
Since

Prob(X = %) = 1)_g (%) ZProb = X + kq)

one gets
px(%) = 1_g ¢/(%) D px(X + kq)
k
Thus we would like to have Y, px(X + kq) = =
Since >4 px(X + kq) = px * >_, 0(X + kq), by Fourier transform
we get (using the Poisson formula)
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11.6.b A first-order analysis of the quantization error

Theorem

The density of X[n] is uniform (on [—q/2, q/2[) iff

ﬁx(zzk)—O, k£ 0
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I11.6.c A second-order analysis of the quantization error

Theorem
The density of (X[n], X[n 4+ m]) is uniform (on [—q/2, q/2[) iff

. 2wk 2wl
PX[n],X[n+m] (qa q) =0, V(k, /) 7& (070)

What preprocessing should we make one X[n] ?

E.Bacry Audio Signal Processing : |. Introduction - MVA



11.6.d Dithering

Theorem 5
The density of X[n] is uniform (on [—q/2, q/2[) iff

21k
ﬁx(g)ZO, Vk # 0

Preprocessing : Dithering

X[n] — X[n] + W[n]

where W[n] is a uniform white noise.
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11.6.d Dithering

Preprocessing : Dithering
X[n] — X[n] + W[n]
where W([n] is a uniform white noise.
Did we really solve our problem ?
Nope : X + W — Q(X + W) is white but not X — Q(X + W)

—> What we did corresponds to substractive dithering
(X — (Q(X + W) — W) is white)

Solution ?
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I1.6.e Decreasing the quantization error

@ Oversampling technique
@ 0 — A technique

In practice ?
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